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Notation

In this section:

• A is typically a rectangular matrix with more rows than columns
• W is a symmetric (square) matrix
• Often W ∝ ATA
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Motivation: Average-case versus
worst-case in high dimensions



Issues with worst-case bounds in high dimensions

In some very specific cases, the high-dimensionality of a given problem provides it with enough
degrees of freedom to “conspire against” a given algorithm.

For, example, consider solving a n× n linear system Wx = b using the conjugate gradient (CG)
algorithm where

W =
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 , 0 < r < 1.
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Issues with worst-case bounds in high dimensions

The CG algorithm is iterative and produces approximations xk that satisfy:

xk = arg min
y∈Rn

{
(x− y)TW(x− y)T : y ∈ span{b,Wb, . . . ,Wk−1b

}
.

It can be shown that for the above choice of W,b, and 1 ≤ k < n

∥b−Wxk∥2 =
(
1
r

)k

but ∥b−Wxn∥ = 0.

The residuals (or norms of the gradient) appear to diverge exponentially before the iteration finally
converges!

And as n increases, this becomes worse. And a worst-case bound needs to account for this
pathological example.
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Introducing distributions

Instead, we may want to choose W and b to be random and consider

E∥b−Wxk∥2.

If one chooses W to be distributed according to the Wishart distribution, as n→∞,

E∥b−Wxk∥2 = rk + o(1), r = r−1 = lim
n→∞

n
d .

But a valid important open problem is: To model optimization in a ML context, what distribution is
relevant for W?

This is an open problem. See Liao and Mahoney [2021] for work in this direction.
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Main RMT tool: Matrix moments



Main linear algebra tool

Recall Cauchy’s integral formula: If f is analytic in a sufficiently large region and C is smooth,
simple, closed curve then

f(z) = 1
2πi

∫
C

f(z′)
z′ − z dz′.

Suppose the eigenvalues of an n× n matrix W are enclosed by C, then

f(W) := Uf(Λ)U−1 =
1
2πi

∫
C
f(z)(zIn −W)−1 dz.

In particular,

Wk =
1
2πi

∫
C
zk(zIn −W)−1 dz.
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Two consequences

1
n trWk =

1
2πni

∫
C
zktr (zIn −W)−1 dz

=
1
2πi

∫
C
zk mESD(z)︸ ︷︷ ︸

Stieltjes transform of
n−1 ∑

j δλj

dz

uTWku =

1
2πi

∫
C
zkuT(zIn −W)−1udz = 1

2πi

∫
C
zk mESD(z)︸ ︷︷ ︸

Stieltjes transform of∑
j wjδλj

dz

∑
j

wjδλj , wj = (vTj u)2
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Analysis of matrix moments

A main RMT takeaway:

Matrix moments⇔ Classical moments of ESD⇔ Contour integrals of Stieltjes transform
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Analysis of matrix moments

A main RMT takeaway:

uTWku ≈
∫
R
xkµESD(dx) ≈

1
2πi

∫
C
zkmESD(z) dz

If a statistic, (which might be the error encountered in, or the runtime of, an algorithm) depends
strongly on these generalized moments, it may be analyzable directly using RMT.
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Resolvent estimates lead to moment estimates

uTWku ≈ 1
2πi

∫
C
zkmESD(z)dz ≈ 1

2πi

∫
C
zkmSCM(z)dz =

∫
R
xkµSCM(dx)

uTP(W)u ≈
∫
R
P(x)µSCM(dx)
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Algorithm halting times (runtimes)



Statistics of algorithm runtimes

Our abstract setup to analyze algorithms is as follows. Suppose first that there is a intrinsic notion
of dimension n.

• Let A be an iterative algorithm to solve a problem Pn (e.g., an n× n linear system with gradient
descent).

• Included with the algorithm, we assume there is a measure of error Ek(Pn;A) at iteration k
(e.g., norm of the gradient).

• Let E represent a distribution from which problems Pn are drawn (e.g., a random matrix and
vector for a linear system).

• The halting time is then defined as

TA(Pn, ε) = min{k : Ek(Pn;A) < ε}.

9



Statistics of algorithm runtimes

Our abstract setup to analyze algorithms is as follows. Suppose first that there is a intrinsic notion
of dimension n.

• Let A be an iterative algorithm to solve a problem Pn (e.g., an n× n linear system with gradient
descent).

• Included with the algorithm, we assume there is a measure of error Ek(Pn;A) at iteration k
(e.g., norm of the gradient).

• Let E represent a distribution from which problems Pn are drawn (e.g., a random matrix and
vector for a linear system).

• The halting time is then defined as

TA(Pn, ε) = min{k : Ek(Pn;A) < ε}.

9



Statistics of algorithm runtimes

Our abstract setup to analyze algorithms is as follows. Suppose first that there is a intrinsic notion
of dimension n.

• Let A be an iterative algorithm to solve a problem Pn (e.g., an n× n linear system with gradient
descent).

• Included with the algorithm, we assume there is a measure of error Ek(Pn;A) at iteration k
(e.g., norm of the gradient).

• Let E represent a distribution from which problems Pn are drawn (e.g., a random matrix and
vector for a linear system).

• The halting time is then defined as

TA(Pn, ε) = min{k : Ek(Pn;A) < ε}.

9



Statistics of algorithm runtimes

Our abstract setup to analyze algorithms is as follows. Suppose first that there is a intrinsic notion
of dimension n.

• Let A be an iterative algorithm to solve a problem Pn (e.g., an n× n linear system with gradient
descent).

• Included with the algorithm, we assume there is a measure of error Ek(Pn;A) at iteration k
(e.g., norm of the gradient).

• Let E represent a distribution from which problems Pn are drawn (e.g., a random matrix and
vector for a linear system).

• The halting time is then defined as

TA(Pn, ε) = min{k : Ek(Pn;A) < ε}.

9



Statistics of algorithm runtimes

Our abstract setup to analyze algorithms is as follows. Suppose first that there is a intrinsic notion
of dimension n.

• Let A be an iterative algorithm to solve a problem Pn (e.g., an n× n linear system with gradient
descent).

• Included with the algorithm, we assume there is a measure of error Ek(Pn;A) at iteration k
(e.g., norm of the gradient).

• Let E represent a distribution from which problems Pn are drawn (e.g., a random matrix and
vector for a linear system).

• The halting time is then defined as

TA(Pn, ε) = min{k : Ek(Pn;A) < ε}.

9



Some history

Probably the most famous, and maybe the most influential, instance of the probabilistic analysis of
an algorithm, was the analysis of the simplex algorithm developed by Dantzig [1951] for linear
programming (see also Dantzig [1990]).

For many years after its inception the simplex method had no provable complexity guarantees.
Indeed, with a fixed pivot rule, there typically exists a problem on which the simplex method takes
an exponentially large number of steps.

Despite the existence of other algorithms for linear programming with provable polynomial runtime
guarantees, the simplex method persisted as the most widely used algorithm.
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Some history

Borgwardt [1987] and, independently, Smale [1983] proved that under certain probabilistic
assumptions and under certain pivot rules, the expected runtime of the simplex algorithm is
polynomial:

ETSimplex(Pn; ε) ≤ polynomial in n.

Limited only by their statistical assumptions, these analyses demonstrated, at least conceptually,
why the simplex algorithm typically behaves well and is efficient.

The subsequent analysis by Spielman and Teng [2004] improved these analyses by providing
estimates for randomly perturbed linear programs. This analysis has since been improved, see
[Dadush and Huiberts [2020], Vershynin [2009], Deshpande and Spielman [2005]], for example.
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Some history

This highlights something we will face here: While we will go through the precise average case
analysis of some optimization algorithms, one can always take issue with the underlying statistical
assumptions we make.

For any average-case analysis one hopes to continue to:

• Expand the class of distributions that can be considered.
• Increase the precision of the resulting estimates.
• Collect additional algorithms that can be analyzed with the same or similar techniques.
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Some history

We also highlight two other success stories in average-case analysis. These are of a different flavor
because randomization is introduced to algorithms to improve their performance. And
subsequently, one has a natural distribution over which to compute averages, but the problem
being solved is deterministic.

The first algorithm is the power method with randomized starting. The power method is an
algorithm to compute the dominant eigenvalue (provided it exists) of a matrix. It also also
approximates the dominant eigenvector.
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Some history

The power method

1. x0 is the initial vector, ∥x0∥ = 1 and W is given.
2. For k = 1, 2, . . .

2.1 Compute vk = Wxk−1
2.2 Compute µk = vTkxk−1
2.3 Compute xk = vk/∥vk∥

The iterates µk, under mild assumptions, will converge to the dominant eigenvalue of W. It is
well-known that the power method will converge at a exponential rate depending on the ratio of
the largest-to-next-largest eigenvalue (a relative spectral gap).
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If W is positive semi-definite and x0 is chosen randomly (x0 = np.random.randn(n),
x0 ← x0/∥x0∥), then it was shown in Kuczyński and Woźniakowski [1992] that a spectral gap is not
need to get average-case error bounds of the form:

E |µk − λmax|
|λmax − λmin|︸ ︷︷ ︸
Ek(Pn;Power)

≤ 0.871 log nk− 1 .

The power method can also be analyzed on random matrices, see Kostlan [1988], Deift and Trogdon
[2017].
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Some history

Lastly, a discussion that is closer to the heart of the matter is the work of Strohmer and Vershynin
[2009] on the randomized version of the original Kaczmarz algorithm [Kaczmarz [1937]] for the
solution of overdetermined linear systems.

The Kaczmarz Algorithm

1. x0 is the initial vector and A is given.
2. For k = 1, 2, . . .

2.1 Select a row aj of A (add randomness here!)

2.2 Compute xk = xk−1 −
bj−aTj xk−1

∥aj∥2
aj

16



Some history

For a consistent overdetermined system Ax = b it was shown that the method satisfies

E ∥xk − x∥2︸ ︷︷ ︸
Ek(Pn;Kaczmarz)

≤
(
1− 1

κ(ATA)

)k

∥x0 − x∥2

where κ(ATA) is the condition number of ATA (to be discussed more later).
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Leveraging RMT

The power of random matrix theory (RMT) is that one can ask and answer more involved questions:

• If Pn is drawn randomly, then

TA(Pn, ε)

is an integer-valued random variable. While it is important bound its expectation or moments,
what about its distribution as n→∞?

• With the same considerations

Ek(Pn;A)

is a random variable. Can we understand its distribution?

18



Universality of the halting time

Sagun et al. [2017] present experiments to demonstrate that the halting time TSGD(Pn; ε) for a
number of neural network architectures exhibits universality. That is, after proper centering and
rescaling, the resulting statistics do not depend (in the limit) on the distribution on Pn.
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Universality

A wide variety of numerical algorithms have been demonstrated (both empirically and rigorously)
to have universal halting times (i.e., runtimes, iteration counts, etc.). The study of universality in
halting time was initiated by Pfrang et al. [2014] and broaded in Deift et al. [2014].

Universality in halting time is the statement that for a given A, and a wide class of ensembles E ,
there are constants µ = µ(E , ε,n) and σ = σ(E , ε,n) and ε = ε(E ,n) such that

lim
n→∞

PE

(
TA(Pn, ε)− µ

σ
≤ t

)
= FA(t).

The limiting distribution is independent of the choice for E .
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A case study: Regression



A natural first step

A natural first place to combine RMT and optimization/ML with a view toward universality is in the
study of linear regression:

arg min
x∈Rn

{
L(x) := 1

2d∥Ax− b∥
2, b = Aa+ η

}
,

where a is the signal, η is additive noise, and

A is a d× n matrix .

There are, of course, many iterative algorithms to solve this problem and we focus on two:

1. the conjugate gradient algorithm (CG) [Hestenes and Steifel [1952]], and
2. the gradient descent algorithm (GD).
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Conjugate gradient on the normal equations

The Conjugate Gradient Algorithm

1. x0 is the initial guess.
2. Set r0 = ATb− ATAx0, p0 = r0.
3. For k = 1, 2, . . . ,n

3.1 Compute ak−1 =
r∗k−1rk−1

r∗k−1A
TApk−1

.

3.2 Set xk = xk−1 + ak−1pk−1 .
3.3 Set rk = rk−1 − ak−1ATApk−1 .

3.4 Compute bk−1 = −
r∗k rk

r∗k−1rk−1
.

3.5 Set pk = rk − bk−1pk−1 .
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A natural first step

Why consider CG?

CG is a highly-structured algorithm with connections to the Lanczos iteration and the theory of
orthogonal polynomials. While we do not discuss many of these details, they play an important role
in the analysis. CG is also a method-of-choice in the broader computational mathematics
community.

A simplification.

Instead of considering CG on the normal equations, ATAx = ATb, we first consider a slightly simpler
problem:

CG applied to ATAx = c.
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Scaling regions

Scaling regions show up here in the relationship between n and d in a sample covariance matrix
W = ATA

d (A is d× n).

Scalings of sample covariance matrices

• d = ⌊nr⌋ for r > 1

(well conditioned)

• d = n

(ill conditioned, but still invertible)

• d = ⌊n+ cnα⌋ for 0 < α < 1

(somewhere in between)

Recall that condition number of a matrix W is defined to be

κ(W) =
σ1(W)

σn(W)
,

i.e., the ratio of the largest to the smallest singular value of W.

Matrices with small condition numbers are said to be well conditioned while those with larger
condition numbers are said to be ill conditioned.
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Three distinct behaviors of CG depending on scaling region
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Qualitative comparison with SGD

While the mechanisms behind these behaviors
are surely different, we see a non-trivial
histogram in each setting.

For CG on Wishart matrices, it can be shown
that

∥rk∥ = ∥c− ATAxk∥
(dist)
=

k−1∏
j=0

χn−j−1

χd−j
,

for independent chi-distributed random
variables.
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Qualitative comparison with SGD

So, if we set

Ek(Wishart;CG) = ∥rk∥

we can analyze the halting time to see that

TCG(Wishart, ε) ≈ 2
cn

1−α log ε−1

+ O(n3/2−2α)N (0, 1),

for 1/2 < α < 1.
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To the well-conditioned regime!

It turns out that the errors Ek(PN;A) for iterative methods for a linear system involving ATA are
often analyzable in the well-conditioned, ill-conditioned and “in between” regimes. But the
analysis of the halting time can be much more involved because the halting time TA(Pn, ε) can tend
to infinity with n!
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To the well-conditioned regime!

So, we, for the time being, let d = ⌊nr⌋ for r > 1.
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Polynomials!

The Gradient Descent Algorithm

1. x0 is the initial vector.
2. For k = 1, 2, . . .

2.1 Select step size γk
2.2 Compute xk = xk−1 − γk∇L(xk−1)

Recall that the gradient of the regression functional is

∇L(x) = Wx− c, W =
ATA
d .

A direction calculation reveals that

xk = Qk(W)c,

for a polynomial Qk of degree k− 1 with coefficients that depend on γj, j = 1, 2, . . . , k.
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More polynomials!

For simplicity, suppose that W is full rank. Then if x is the true minimizer, a crucial calculation is that

x− xk = W−1c− Qk(W)c = W−1 (In −WQk(W))︸ ︷︷ ︸
Rk(W)

c.

Note that Rk is a polynomial of degree k satisfying Rk(0) = 1.

Then

∇L(xk) = Wxk −Wx = Rk(W)c,
∥Rk(W)c∥2 = cTRk(W)2c.
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Example: GD

For GD follows that the difference xk − x satisfies

xk − x = xk−1 − x− γk(Wxk−1 −Wx) = (In − γkW)(xk−1 − x).

And so,

Rk(x) =
k∏
j=1

(1− γjx).

For CG the polynomial Rk is best characterized using the theory of orthogonal polynomials.
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Enter RMT

∥Rk(W)c∥2 = cTRk(W)2c

The error analysis of GD (and, as it turns out, CG) is reduced to:

1. The determination/characterization of the polynomial Rk.
2. The estimation of cTRk(W)2c.
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Enter RMT

For many methods of interest (CG and GD included), the coefficients of Rk depend continuously on
the eigenvalues and eigenvectors of W in a sufficiently strong sense that

Rk(x)
Pr−−−→

n→∞
Rk(x)←− deterministic.

Then, one can conclude

cTRk(W)2c Pr−−−→
n→∞

∫
R
Rk(x)2µSCM(dx).

This provides a deterministic limit for the (random) errors that are encountered throughout the
algorithm.

Note: This is true only if c is independent of W and in the regression problem it is not.
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Building back to true regression

For the regression problem, we have

c = 1
n

[
ATAa+ ATη

]
.

Then

∥L(xk)∥2 = aTW2Rk(W)2aT + 1
n2 η

TARk(W)2ATη +
2
na

TWRk(W)2ATη︸ ︷︷ ︸

Pr−−−→
n→∞

R
∫
R
x2Rk(x)2µSCM(dx) + R̃

∫
R
xRk(x)2µSCM(dx)︸ ︷︷ ︸

e2k

.

Important features:

• This demonstrates that the entire spectrum of W contributes via µSCM

• Nearly all probabilistic analyses of algorithms give inequalities whereas this gives true
leading-order behavior.
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Step-size selection

∥L(xk)∥2 Pr−−−→
n→∞

R
∫
R
x2Rk(x)2µSCM(dx) + R̃

∫
R
xRk(x)2µSCM(dx)

If one has a good guess as to what the limiting distribution µSCM is then the γk’s in GD can be
chosen based on this limit — to minimize this expression, see Pedregosa and Scieur [2020].

Furthermore, by preconditioning one can make such a guess valid, see Lacotte and Pilanci [2020].
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Deterministic halting

Provided that ek
k→∞−−−→0, one finds that

lim
n→∞

P (TA(Pn; ε) = min{k : ek < ε}) = 1,

for most choices of ε.

This turns out to be true for all d ≥ n, n→∞, for the regression problem with CG or GD.

35



Deterministic halting for CG with r = 2, ε = 10−4
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Outlook

RMT provides non-trivial tractable models to analyze the statistics of optimization algorithms.

Other algorithms are analyzable:

• MINRES algorithm
• Polyak algorithm
• Nesterov accelerated algorithm
• SGD for regression
• . . .

See the preprints: Paquette and Trogdon [2020], Paquette et al. [2021], Ding and Trogdon [2021],
Paquette et al. [2020]
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Outlook

Other ensembles are analyzable using the following results from RMT:

• Spiked random matrices (see Baik et al. [2005], Bloemendal and Virág [2013], Ding and Yang
[2019], and many more)

• Nonlinear models (see Part 4)
• Random graphs (see Erdős et al. [2013], for example)
• Invariant ensembles (see Bourgade et al. [2014], Deift [2000] and many more)
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Open questions

Many open questions remain:

• To what extent can one move these ideas beyond regression? To a two-layer network?
Rank-one matrix completion problem?

• What is a good probability distribution to study? Wishart is clearly the place to start but what
is relevant in practice?
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A CG demo

See Colab for a CG demo
https://colab.research.google.com/drive/

1UZRSK665b8sqq0NQFwMCwrVabPlB-7nK?usp=sharing
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