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Why does deep learning work?

Deep neural networks define a flexible and expressive class of functions.

State-of-the-art models have millions or
billions of parameters
• Meena: 2.6 billion
• Turing NLG: 17 billion
• GPT-3: 175 billion

Source: [Canziani et al., 2016]

Models that perform well on real data can
easily memorize noise

Source: [Zhang et al., 2021]

1



Why does deep learning work?

Deep neural networks define a flexible and expressive class of functions.

State-of-the-art models have millions or
billions of parameters
• Meena: 2.6 billion
• Turing NLG: 17 billion
• GPT-3: 175 billion

Source: [Canziani et al., 2016]

Models that perform well on real data can
easily memorize noise

Source: [Zhang et al., 2021]
1



Why does deep learning work?

Deep neural networks define a flexible and expressive class of functions.

⇒ Standard wisdom suggests they should overfit

2



Why does deep learning work?

Deep neural networks define a flexible and expressive class of functions.

⇒ Standard wisdom suggests they should overfit

3



Double descent

However, large neural networks do not obey the classical theory:

Source: [Belkin et al., 2019]

Source: [Advani et al., 2020] Source: [Nakkiran et al., 2019]

The emerging paradigm of double descent seeks to explain this phenomenon. 4



Models of Double Descent



History of double descent: Kernel interpolation

1) Interpolating kernels (trained to zero error) generalize well [Belkin et al., 2018]

⇒ Double descent is not unique to deep neural
networks

2) Kernels can implicitly regularize in high
dimensions [Liang and Rakhlin, 2020]
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Source: [Liang and Rakhlin, 2020]

3) Consistency is a high-dimensional phenomenon [Rakhlin and Zhai, 2019]:

The estimation error of the minimum-norm kernel interpolant

argmin
f∈H

∥f∥H s.t. f(xi) = yi , i = 1 . . .n

does not converge to zero as n grows, unless d is proportional to n.
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Models of double descent: High-dimensional linear regression

What is the simplest theoretically tractable model that exhibits double descent?

Linear regression suffices, but requires a mechanism to vary the effective number of
parameters or samples:

• The size of randomly selected subsets of features [Belkin et al., 2020]
• The dimensionality of the low-variance subspace [Bartlett et al., 2020]
• The sparsity of the generative model [Mitra, 2019]
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Models of double descent: Random feature models

In random feature regression, the number of random features controls the model
capacity, and can be tuned independently from the data.

Exact asymptotic results in high dimensions exist in many settings, including:

• Unstructured random features [Mei and Montanari, 2019]
• NTK-structured random features [Adlam and Pennington, 2020]
• Random Fourier features [Liao et al., 2020]
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Random feature models



Random feature regression: definition

Random feature regression is just linear regression on a transformed feature matrix,
F = f( 1√

dWX) ∈ Rm×n, where W ∈ Rm×d, Wij ∼ N (0, 1).

• Model given by β⊤F (instead of β⊤X) — variable capacity (m vs d parameters)
• f(·) is a nonlinear activation function, acting elementwise
• F is equivalent to first post-activation layer of a NN at init

For targets Y ∈ R1×n, the ridge-regularized loss is,

L(β; X) = ∥Y− 1√
mβ

⊤F∥22 + λ∥β∥22 ,

and the optimal regression coefficients β̂ are given by,

β̂ = 1√
mY(K+ λIn)−1F⊤ , K = 1

mF
⊤F .

Note that Q ≡ (K+ λIn)−1 is the resolvent of the kernel matrix K.
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Random feature regression: training error

Training error is determined by the resolvent matrix Q ≡ (K+ λIn)−1:

Etrain(λ) = 1
n∥Y−

1√
m β̂

⊤F∥22
= 1

n∥Y−
1
mYQF

⊤F∥22
= 1

n∥Y− YQK∥22
= 1

n∥Y(In − QK)∥22
= λ2 1n∥YQ∥

2
2 ,

where we used that In − QK = In − Q(Q−1 − λIn) = In − (In − λQ) = λQ.

So we see that the training error measures the alignment between the resolvent and the
label vector.

What about the test error?
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Aside: Generalized cross validation (GCV)

A model’s performance on the training set, or subsets thereof, can be useful for
estimating its performance on the test set.

• Leave-one-out cross validation (LOOCV)

ELOOCV(λ) = 1
n∥YQ · diag(Q)−1∥22

• Generalized cross validation (GCV)

EGCV(λ) = 1
n∥YQ∥

2
2/(

1
n tr(Q))

2

In certain high-dimensional limits, EGCV(λ) = ELOOCV(λ) = Etest(λ):

• Ridge regression [Hastie et al., 2019]
• Kernel ridge regression [Jacot et al., 2020]
• Random feature regression [Adlam and Pennington, 2020]
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Random feature regression: high-dimensional asymptotics

To develop an analytical model of double descent, we study the high-dimensional
asymptotics:

m,d,n→ ∞ such that ϕ ≡ d
n , ψ ≡ d

m are constant.

In this limit, only linear functions of the data can be learned.

• Intuition: only enough constraints to disambiguate linear combinations of features.
• Nonlinear target function behaves like linear function plus noise

Therefore it suffices to consider labels given by

Y = 1√
dβ

∗⊤X+ ε , εi ∼ N (0, σ2ε) .

For simplicity, we focus on the specific setting in which,

Xij ∼ N (0, 1) and β∗ ∼ N (0, Id) .
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Random feature regression: test error

In the high-dimensional asymptotic setup from above, the random feature test error can
be written as,

Etest(λ) = EGCV(λ)
= lim

n→∞
1
n∥YQ∥

2
2/(

1
n tr(Q))

2

= lim
n→∞

1
n∥(

1√
dβ

∗⊤X+ ε)Q∥22/( 1n tr(Q))
2

= lim
n→∞

1
n tr[(σ

2
εIn + 1

dX
⊤X)Q2]/( 1n tr(Q))

2

≡ −σ
2
ετ

′
1(λ) + τ ′2(λ)

τ1(λ)2
,

where we used that ∂
∂λQ = −Q2, and we defined

τ1 = lim
n→∞

1
n tr(Q) and τ2 = lim

n→∞
1
n tr(

1
dX

⊤XQ) .
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Computing the asymptotic test error

To compute the test error, we need:

τ1 = lim
n→∞

1
n tr(K+ λIn)−1 and τ2 = lim

n→∞
1
n tr(

1
dX

⊤X(K+ λIn)−1) .

Recalling the definition of K,

K = 1
mF

⊤F , F = f( 1√
dWX) ,

it is evident that the entries of F are nonlinearly dependent.

• Cannot simply utilize standard results for Wishart matrices
• Stieltjes transform is insufficient for τ2

These technical challenges can be overcome with two tricks:

1. Constructing an equivalent Gaussian linearized model
2. Analyzing a suitably augmented resolvent
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Computing the asymptotic test error: Gaussian equivalents

The nonlinear dependencies in F = f( 1√
dWX) complicate the analysis.

Can we identify a simpler matrix in the same universality class?

There exist constants c1 and c2 such that

F ∼= Flin ≡ c1 1√
dWX+ c2Θ , Θij ∼ N (0, 1) ,

where F ∼= Flin indicates the two matrices share all statistics relevant for computing the
test error:

τ1 = lim
n→∞

1
n tr(

1
mF

⊤F+ λIn)−1 = lim
n→∞

1
n tr(

1
mF

⊤
linFlin + λIn)−1

τ2 = lim
n→∞

1
n tr(

1
dX

⊤X( 1mF
⊤F+ λIn)−1) = lim

n→∞
1
n tr(

1
dX

⊤X( 1mF
⊤
linFlin + λIn)−1)

How can we compute these traces? Need to augment the resolvent.
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Computing the asymptotic test error: resolvent method

Recall from Part 2 that the resolvent method identifies consistency relations between
suitably chosen submatrices of the resolvent.

Here we can undertake a similar analysis as in Part 2, but now on an augmented matrix,

H =

[
λIn 1√

mF
⊤
lin

1√
mFlin −Im

]
,

which encodes the resolvent through Q = (K+ λIn)−1 = [H−1]1:n,1:n.

To derive consistency relations, we consider two submatrices: H(1) (leaving out
row/column 1), and H(n+1) (leaving out row/column n+ 1).

As before, we use the Sherman-Morrison formula to compute [H(1)]−1 and [H(n+1)]−1, and
relate them to Q and rows/columns of Flin.

Straightforward concentration arguments eventually lead to coupled self-consistent
equations for τ1 and τ2 [Adlam et al., 2019].
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Computing the asymptotic test error: free probability

An alternative augmentation of the resolvent completely linearizes the dependence on
the random matrices:

M =


λIn c2

mΘ
⊤ c1√

dmX
⊤ 0

c2Θ −Im 0 c1√
dW

0 W⊤ −Id 0
X 0 0 −Id

 ,

where the Schur complement formula now gives,

τ1 = lim
n→∞

1
n tr([M

−1]1,1) , and τ2 = lim
n→∞

1
n tr([M

−1]4,3) .

The asymptotic blockwise traces tr([M−1]a,b) can themselves be computed using free
probability [Adlam and Pennington, 2020].
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Computing the asymptotic test error: free probability

M is linear in the random matrices X, W, and Θ:

M =


λIn 0 0 0
0 −Im 0 0
0 0 −Id 0
0 0 0 −Id

+


0 0 c1√

dmX
⊤ 0

0 0 0 0
0 0 0 0
X 0 0 0

+


0 0 0 0
0 0 0 c1√

dW
0 W⊤ 0 0
0 0 0 0

+


0 c2

mΘ
⊤ 0 0

c2Θ 0 0 0
0 0 0 0
0 0 0 0


Can we compute the blockwise traces with free probability via the R-transform?

Not naively: the additive terms are independent, but not free over C.

However, they are free over M4(C), and there exists a suitable operator-valued generalization of the
R-transform that enables the necessary computations [Mingo and Speicher, 2017].
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Asymptotic test error

Theorem
Let η = E[f(g)2] and ζ = (E[gf(g)])2 for g ∼ N (0, 1). Then, the asymptotic traces τ1(λ)
and τ2(λ) are given by solutions to the polynomial system,

ζτ1τ2 (1− λτ1) = ϕ/ψ (ζτ1τ2 + ϕ(τ2 − τ1)) = (τ1 − τ2)ϕ ((η − ζ)τ1 + ζτ2) ,

and, Etrain = −λ2(σ2ετ ′1 + τ ′2) and Etest = −(σ2ετ
′
1 + τ ′2)/τ

2
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